https://github.com/JunkyByte/easy_ViTPose
backbone→ ViT
head(TopdownHeatmapSimpleHead)→ Decoder
model.py
class ViTPose(nn.Module):
def __init__(self, cfg: dict) -> None:
super(ViTPose, self).__init__()
backbone_cfg = {k: v for k, v in cfg['backbone'].items() if k != 'type'}
head_cfg = {k: v for k, v in cfg['keypoint_head'].items() if k != 'type'}
self.backbone = ViT(**backbone_cfg)
self.keypoint_head = TopdownHeatmapSimpleHead(**head_cfg)
def forward_features(self, x):
return self.backbone(x)
def forward(self, x):
return self.keypoint_head(self.backbone(x))
vit.py
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2)
self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio))
self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1]))
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio), padding=4 + 2 * (ratio//2-1))
def forward(self, x, **kwargs):
B, C, H, W = x.shape
#downsampling
x = self.proj(x)
Hp, Wp = x.shape[2], x.shape[3]
#flatten, linear projection
x = x.flatten(2).transpose(1, 2)
vit.py
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU,
norm_layer=nn.LayerNorm, attn_head_dim=None
):
super().__init__()
# norm layer
self.norm1 = norm_layer(dim)
# attention
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
# mlp
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
# FFN
def forward(self, x):
# skip connection
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
proj_drop=0., attn_head_dim=None,):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.dim = dim
self.scale = qk_scale or head_dim ** -0.5
# query key value
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# scaling
q = q * self.scale
# query, key 행렬 내적하여 attention score
attn = (q @ k.transpose(-2, -1))
# softmax
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# attention score를 value 행렬과 내적
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
topdown_heatmap_base_head.py